2018-10-24
\(\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n}\) \(s.d = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}\)
Mean and standard deviation
\(\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n} = 970\)
\(s.d = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}=1912.57\)
Mean and standard deviation
\(\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n} = 289\)
\(s.d = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}=153.79\)
Mean and standard deviation: low breakdown point
\(\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n} = 289\)
\(s.d = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2}=153.79\)
Credit: Effect Size FAQs by Paul Ellis
Try this annoymous quiz to see if you understand the materials so far…